(Invited Address)
1979.

International Joint Conference of Artifical Intelligence, Tokyo,
(Published in the Conference Proceedings, Los ATtos: W. Kaufmann Inc., 1979.)

SOLVING MECHANICS PROBLEMS USING META-LEVEL INFERENCE

Alan Bundy,

Lawrence Byrd,

George Luger,

Chris Mellish & Martha Palmer.
Department of Artificial Intelligence,
University of Edinburgh,

Scotland.

Edinburgh,

In this paper we shall descibe a program (MECHO), written in Prolog [14],

which solves a wide range of mechanics problems

predicate calculus and English.

from statements d1in both

Mecho uses the technigque of meta-level

inference to control search in natural language understanding, common sense

inference, model formation and algebraic manipulation.
controlling

'is a powerful ‘technique for

this
the

We argue that

search while retaining

modularity of declarative knowledge representations.

Keywords

1. Introduction

The work described in this paper addresses
the question of how it is possible to
formal representation of a problem from an
English statement, and how it is themn possible
to use this representation in order to solve
the problem. Our purpose in studying natural
language understanding in conjunction with
problem solving 1is to bring together the
constraints of what formal representation can
actually be obtained with the question of what

knowledge 1is required in order to solve a wide
range of problems in a semantically rich
domain. We believe that these issues cannot

sensibly be tackled in isolation. In practical
terms we have had the benefits of an increased
awareness of common problems in both areas and
a realisation that some of our techniques are
applicable to both the control of inference and
the control of parsing.

Early work on solving mathematical problems
stated in natural language was done by Bobrow
(STUDENT - ({1]) and Charniak (CARPS = [5]).
However the rudimentary parsing and simple
semantic structures used by Bobrow and Charniak
are inadequate for any but the -easiest
problems. Qur intention has been to build on

This work was supported by SRC grant number
B/RG 94493 and an SRC research studentship for
Chris Mellish.

get a-

Natural Language, Mathematical

Meta-lavel Inference, Predicate Calculus,

1017

Search
Mechanics.

Reasoning, Control,

advances 1in natural language processing (eg
{18]) in order te study parsing and problem
solving in a domain which requires
sophisticated knowledge about the world. The
domain we have been working in 1is that of
mechanics problems, which deal with idealised
objects such as smooth planes, light
inextensible strings, frictionless pulleys etc.
The idealised nature of this domain made it
feasible to consider building am expert
inferential system which would be able to cope
with a wide range of problems. To date, our
program has tackled problems in the areas of:
pulley problems, statics problems, motion on
smooth complex paths and motion under constant
acceleration. Our intention i1s to continue
expanding this in order to force generality

into our solutions. In recent years a lot of
similar work has been in progress on
Physics-type domains such as ours. (eg [13],
{71, {15}, (11]). We have been concerned to

adopt methods developed by these
Mecho,
by them.

workers into
and to solve mechanics problems tackled

2. Description of the Program

The block diagram (fig 1) gives a very

general overview of the structure of the MECHO
program. Each block represents a closely
related collection of Prolog clauses
(procedures), the arrows between locks

Intermediate
SYNTAX SEMANTICS Data-Base |
Handler

PROBLEM
SOLVING

DATA
oy BASE

MECHO

Data Base
Manager/

Unit Conversion 3 Inference
: Control

ALGEBRA
PACKAGE

|

Fig 1 : Program Block Structure.

S el O YR AR £ S ERTA o0 i R 0B i o e KV B 00 et L

TEXT
~_{ Dictionary
. b — { Grammar Rules
Reference SYNTACTIC
Filtering STRUCTURE
*‘ B iSemantic Structures
Directf—-—-—-eﬁ ASSERTIONS
Input
Schemata
N Meta=-level Information
— v) Inference Rules
& Physical Formulae
EQUATIONS/
INEQUALITIES
J
v - (Rewrite Rules
NUMERIC/
SYMBOLIC SOLUTION
Fig 2 : Representation Structures

1018

. overall

1ndicace invocation/communication links. (For
ractical reasons MECHO 1is split into three
ceparate modules, but this is irrelevant to the
structure). The accompanying diagram
(fig 2) tries to capture the changes in
representation and the various types of
xnowledge required during the execution of the
programe The following discussion will
elaborate on these. ’

fnput to the program is in the form of
English text. An example taken from the area
of pulley problems would be:

"Two particles of mass b and c are
connected by a light string passing
over a smooth pulley. Find the
acceleration of the particle of
mass b." (1)

(Taken from.[10])

The purpose of the natural language module 1is
to produce a set of predicate calculus
assertions which will enable the problem solver
to solve the problem. This objective of
producing a symbolic representation of the
‘meaning’ of the problem statement has been
used by us as a vehicle for exploring
syntax-semantics interaction. The syntactic
parser calls semantic routines as soon as
possible in order to interpret fragments of
text and quickly reject inappropriate syntactic
choices. The work of the syntax routines
divides into clause syntax and phrase syntax.

The purpose of syntactic analysis at the
clause level is to establish clause boundaries
and, within each clause, to prepare the ground
for the semantic analysis
Clause analysis thus involves identifying the
start of new phrases, assigning syntactic roles

to the phrases and performing phrase analysis
to interpret the internal structure of the
phrases. The internal phrase analysis
typically returns simply a referent (and some

This
is
information

captured in

effects’” by
the analysis.
responsible for

given object

typing information) to the higher levels.
means that preliminary reference evaluation
carried out locally, with the
conveyed by a phrase being
assertions produced as ’side
semantic routines called during
These semantic routines are
interpreting what it means for a
to have a certain property, and indeed for
checking whether or not it can have the
property. Domain = specific information
concerning typing, idealisation and
object-property possibilities is used to answer
these questions. Failure of the semantics

of the main verb.

1019

indicates that the
following (simple)

is invalid. The

shows the kind of
%

meta-level structures used in this process.

parse
example

meaning(light,0Object,mass(Object,zero)).
type_constraint(light,physobj).
The meaning predicate states that the wmeaning

of applying the property light to an object, is
that the

object has a mass of <zero.
type_constraint asserts that being a physical
object 1is a necessary condition to having the

property light.

It 1is interesting to note that the
declarative assertions which give the meaning
of a phrase can be specified independently of
how they will be used. Meta-level information
concerning the state of the analysis is used to
determine whether they are used to add new
information or to test neccessary constraints
on previous information. (This 1is basically
the “‘given’/“new” distinction discussed in

[(81).

One of the aspects of natural language
understanding that has interested us especially
is the way in which criteria of semantic
well-formedness can be used to resolve cases of
ambiguity in reference evaluation. Our program
incorporates a full deductive mechanism, as
opposed to semantic markers, to capture the
global semantic constraints that arise during
the interpretation. Reference evaluation
proceeds continuously during the combined
syntactic and semantic analysis with semantic
information being used to filter sets of
possible candidates for referents. The method
used to achieve this in a general way 1is
basically that of Waltz filtering [l16]. As can
be seen, the referent returned by the phrase
syntax is likely to be incompletely specified
and for this reason all interaction between the
semantics and the data-base is handled by an
intermediate data-base handler which implements

*

The notation used here, and in following
examples, follows the Prolog convention that
names starting with an upper case letter are
logical variables which are purely local to the
structure (Prolog clause). Atoms, which are in

lower case, and compound terms all stand for
themselves. Rules are of the form
‘P <=~ Q & R’ meaning "if Q and R them P’.

Most examples have

alteration.

undergone slight cosmetic

the inference system and reference filtering

system over these referents.

The syntactie structure built by the clause
syntax specifies a wmain verb, and positions
such as ‘logical subject’ and ‘logical object’
are filled by referents. (We do not construct
a complete parse tree as such). TFrom this
structure a set of assertions is generated by
invoking semantic routines. The semantic
analysis of the verb maps the main verb onto a
base verb and establishes a mapping between the
syntactic roles of the clause and the deep
roles associated with the base verb. As a
result the referents are fitted into conceptual
slots in a way similar to conventional
‘caseframe’ analysis. The base verb then
specifies the assertions (in terms of the
referents) which K follow from this mapping.
Base verbs differ from case frames in that
while they attempt to generalise collectioms of

related verbs, they are not defined in terms of

universal primitive roles or slots.

Given a satisfactory parse
which produces

of a sentence,
a set of consistent assertions

and disambiguates the referents, we are then
able produce a set of assertions (by
instantiating out the referents) about the

objects in the problem. " These are supplied to
the problem solving module. As an example, the
assertions produced for the above problem
statement (1) would be:

isa(period,periodl)
isa(particle,pl)
isa(particle,p2)
isa(string,sl)
isa(pulley,pull)
end(sl,endl,right)
end(sl,end2,left)
midpt(sl,midptl)

fixed contact(endl,pl,periodl)
fixed_pontact(end2.p2,period1)
fixed_contact(midptl,pull,periodl)
mass(pl,massl,periodl)
mass(pl,mass2,periodl)
mass(sl,zero,periodl)
coeff(pull,zero)
accel(pl,al,270,periodl)
accel(p2,a2,90,periodl)
measure(massl,b)
measure(mass2,c)

sought(al)

given(massl)

given(mass2)

(2)

In addition the following schema is cued:

1020

cue pullsys_ptan(sysl,pull,sl,pl,pZ,periodl)

The cueing of schemata is necessary to
extra information, defaults etc.

provide
which are not

given explicitly but are “house rules’ in this
domain. (Eg That the pulley in a pulley system
has negligable weight). We cue schemata,

fairly simplistically, by recognising key words
and certain object configurations. For example
the following structure asserts that a
pulley-system schema can be cued if objects can
be found which satisfy the ideal-type
contraints and have certain relationships
between each other.

sysinfo(pullsys,
{Pull,Str,Pl,P2],
{pulley,string,solid,solid],
{ supports(Pull,Str),
attached(Str,Pl),
attached(Str,P2)
1.

The effect of this cue would be
schema such as:

to invoke a

schema(pullsys,
{Pull,Str,Pl,P2]), Time,
{ constaccel(Pl,Time),
constaccel(P2,Time),
cue stringsys(Str,[Lpart,Rpart]),
(tension(Lpart,Tl, Time)
<-= coeff(Pull,zero) &
tension(Rpart,T,Time))
1,
{ coeff(Pull,zero),
mass(Pull,zero,Time)

1.

This schema asserts that in a standard pulley
problem the objects undergo constant
acceleration, the tension in both parts of the

string are equal if there is no friction (only
one rule shown), and that the friction and mass
of the pulley default to zero if not otherwise
given. (This example has been somewhat
simplified).

be used
problem
problem
tackle
natural
The
these
Newtonian

calculus notation can
to dinput problems directly to the

solver - and in fact research om the
solver has resulted in it being able to
a wider range of problems than the
language module can currently handle.
representational principles behind
assertions view the objects of
Mechanics in terms of simple =zero and one
dimensional objects (points and lines) which
are typed and have properties and relations
defined over them. For example particles,

The predicate

ulleyss spatial points, moments of time are

w1l types of POINT while rods, strings, paths
(;:ajeCtOries)’ and periods of time are types
of LINE. Physical quantities, such as length,
gelocity, force etc., form the other main
pranch of our type hierarchy. (see [&]).

The work of the Problem Solver divides into
two types of task. There is the overall
strategic task of deciding what to do, how to
solve the problem by producing equations which
solve for unknown quantities (including
intermediate unknowns introduced during the
solution). On the other hand there is the

‘vactical task of combining the input assertions

with general facts and inference rules in order
to prove required goals. We shall discuss each
of these in turn.

Qur
directed

overall strategy is a general goal

algorithm for equation extraction
developed from a study by David Marples of
student engineers (12]. For instance, suppose
al, the acceleration of particle pl, is " the
(only) sought unknown. (Here we continue the
example started above (1) (2)). Resolution of
forces about pl will be chosen to solve for al
and this produces the equation: ’

-massl.g + tensionl = massl.al (3)

All possible force contributions on pl are
examined and since pl is attached to the end of
the string this results in the string being
considered. tensionl was formerly unknown but
the function properties of the predicate
‘tension’ enable it to be created (see later)
to allow the equation to be formed. We have to
introduce temsionl as an unknown because it is
not possible to solve for al without doing so.
The next step is to solve for tensionl which is
a force and involves the string sl. Again
resolution of forces is selected - pl, pull, p2
being objects on the string which are possible
candidates for resolving about. pl has been
previously used and only p2 can be used without

introducing unknowns. The result is the
equation:
mass2.g - tensionl = mass2.al 4)

These two equations can be solved to produce a
solution for al.

The input assertions provide meta-=level
information about whether certain quantities
are sought or given. The Marples Algorithm

works by traversing the list of sought unknowns
in a fixed order: the (quantity) type of each
unknown being used to provide a shortlist of

1021

formulae that could solve for it, and the
definition of the quantity (ie the assertion
which introduced it) being used to find the

physical objects, times and angles involved.
Notice that there is a distinction made between
‘formulae’, which are composed of variables
over quantities (eg ‘F =M*%*A%), and
‘equations’ which are instantiations of
formulae (eg (3) .and. (4) above). In the
Marples algorithm we are reasoning about the
properties of formulae in order to successfully
produce appropriate equations.

Before the application of a formula to
produce an equation, there is a stage of
qualitative analysis where general facts about

the problem are used to decide applicability.
Qur interest here is in exploring the selective

use of meta-level reasoning to guide the
equation extraction process. As well as
deciding applicability we have to prepare a
situation within which to apply a formula.
This may involve, for example, collecting
together all the objects connected to a

particle if we wish to resolve forces about it.
General independence criteria (eg “You can’t
resolve forces about the same object in
linearly dependent directions’) are also used

to eliminate redundant equations.,

The following are (simplified) examples of
the meta-level structures used during the above
example:

kind(al,accel,
relaccel(pl,earth,al,270,periodl)).

relates(accel, .
[resolve,constaccel-N,relaccel]).

prepare(resclve,relaccel(?,earth,A,Dir,Time),
situation(P, Set,Dir,Time))
<-= isa(particle,P) &
findall(X, sameplace(X,P,Time), Set).

isform(resolve,situation(0Obj,Set,Dir,Time),
FaM* A)
<-- mass{Obj, M ,Time) &
accel (Obj,A,Dir,Time) &
sunforces(Obj,Set,Dir,Time, F).

The kind predicate asserts that al 1is a
quantity of type accel defined in the given
relaccel assertion. relates states that all
the formulae whose names are given in the list,
contain variables of type accel and therefore

can be used to solve for acceleration. prepare
gives the criteria for comstructing the
situation within which to resolve forces, and

[

the disform predicate defines the equation by
defining the meaning of its component
variables.

The equation extraction algorithm is two pass
in that it first tries to produce a solution
which does not introduce new unknowns before
allowing the introduction of extra
(intermediate) unknowns which are added to the
unknowns list and have to be eventually solved
for. Notice that the quantities manipulated
are purely symbolic; they can be introduced by

the creation mechanism (see later) without
their values being known at this stage.
E.g. When the first equation (3) was formed in

the above example, the quantity tensionl was
introduced without the program knowing, or
trying to find, its actual value, As can be
seen, it 1is the Marples algorithm which will
eventually produce an equation which solves for
tensionl.

The data-base stores all the facts supplied
by the English statement, but to bridge the gap
between the explicit information derived from
the problem statement and that needed to solve
the problem the program requires a general
knowledge of mechanics which is formalised in a
set of inference rules. An example of such
(object-level) inference rules would be:

relaccel(P1,P2,zero,Dir,Period)
<=-= constrelvel(Pl,P2,Period).

constrelvel(P1,P2,Period) .
<=— fixed contact(Pl,P2,Period).

The first rule says that the relative
acceleration between two points of reference is
zero if there is a constant relative . velocity
between them (over a certain period), and the
second rule says that two points of reference
have a constant relative velocity if they are
in contact (again, over a certain period). The
inference rules are a set of horm clauses which
have been hand ordered and contain certain
typing information to guide. selection. The
search strategy is depth first, with pruning of
semantically meaningless goals, and while this
could be improved upon, current performance has
not yet necessitated such a step.

An important part of our work has been the
investigation of search control mechanisms
which will enable effective use of this wealth
of implicit knowledge. All requests to
retrieve assertions from the data-base, either
directly or via inference, are handled by the
inference control module. This module uses

e T e -
=

1022

information from 'the request along with
meta-information and inference rules in an
attempt to satisfy the goal. The first step

involves normalisation of the goal to remove
syntactic sugar or to express it in terms of a
smaller set of underlying predicates. This is
performed with a one pass rewrite rule set.
The resulting goal is then classified according
to the instantiation state of its component
arguments and the possibility of using function

properties and certain other mathematical
properties of the predicate (such as
reflexivity, symmetry and transitivity). This
information is used to select appropriate
proving strategies. (A basic strategy of “unit
preference’ will always first check the

data-base directly).

Our two most important strategies are the use
of function properties to prune search and the
use of equivalence class type mechanisms to
direct it. The representation treats what
would normally be considered functions as
predicates with extra control informationm.
Being a function means that certain arguments
are uniquely determined by <certain other
arguments., For example, in the predicate
‘tension(String,T,Time)’ The actual tension T
is determined once the String and the Time have

_been given.

These function properties can be used to
prevent useless inference if another
(different) value of a function argument is
already known (uniqueness property); to create
new entities to satisfy a goal if all attempts
at inference have failed (existence property);
and to automatically eliminate backtracking by
disregarding choices made during inference
(uniqueness again). Examples of the meta-level
structures used by the program in performing
the above are: :

rewrite(accel(P,A,Dir,Time),
relaccel(P,earth,A,Dir,Time),
strategy(dbinf)).

meta(relaccel, 5,
{P1,P2,A,Dir,Time],
[pt_of ref,pt of ref,accel,angle,time],
function((P1,P2,Time) => [A,Dir])).

The rewrite rule tells wus that any accel
predicate can be rewritten to a relaccel
predicate with the earth as the other point of
reference, and that the standard inference
strategy 1is then applicable. The meta
predicate specifies the argument types and the
function properties of the predicate relaccel.

The second major strategy, which provides
alternative

an
to using the inference rules, is a

general similarity class mechanism based on
equivalence class ideas. Predicates which are
(pseudo—) equivalence relations and would

normally produce self-resolving inference rules
are defined in terms of this mechanism. A tree
is used to represent similarity class
membership and the goal (such as ‘being in the
same place’) is proved by establishing
equivalence of roots. This can be seen as an
alternative (and less explosive) axiomatisation
of these predicates. Our extension over
traditional uses of this method has been to
allow labelled arcs and calculation during the
tree traversal. Thus predicates 1like ‘vector
separation” and “relative velocity’ which have
pseudo-equivalence properties can also use this
strategy. Here is an example of a structure
used in these cases:

rewrite(sameplace(P,Q,Time),
[sameclass(P,Q,touch(Time)),
merge(P,Q, touch(Time)) 1,
strategy(simclass)).

This states that the predicate sameplace should
use the general sameclass mechanism on the
particular tree touch(Time). Also specified is
an updating mechanism for adding new sameplace
assertions; in this case it would involve
merging two separate trees.

These general strategies can be applied to a
wide range of predicates and often capture
important facts about the domain (eg the fact
that an object cannot be in two places at once
is a fact about the function properties of
‘at(Object,Place,Time)“). The explicit control
of new object creation coupled with. the.goal
directed backward reasoning method of the
Marples algorithm results in a
create/consider~-by-need type of behaviour.
Restrictions, such as ‘don’t create” or “don’t
infer’, can be added to the request for a goal
to be proved and this enables the Marples
algorithm to be selective over its use of the
Inference Control in accordance with its needs
at the time.

For some mechanics problems a process of
prediction is required to answer questions like
"Wwill the particle reach the top of the slope
if it starts with velocity V ?". Each question
about the motion of a particle on a complex
slope unpacks into a series of questions about

the behaviour on simple parts of the slope.
Some of these can be answered immediately on
the basis of the qualitative shape of the

1023

S e e e r———— e =

slope, but others
inequalities

involve the solution of
containing unknown quantities.

These unknowns are declared as sought and the
equation extraction algorithm i1is called to
solve for them, The inequalities can then be

solved to answer the question. Our present
prediction system is special purpose and built
around problems similar to those in tackled by
De Kleer, ie motion problems.

Since the equations produced by the equation
extraction algorithm are in terms of symbolic
quantities, there is a stage of Unit Conversion

where the actual values are substituted and a
final unit system is selected = conversion
factors being added where appropriate. (Some

problems involve a combination of all sorts of
different units - feet, yards, miles......).
The two equations produced above ((3) & (4))

are very simple in that no particular units are
involved. The only step will Dbe the
substitution of b and ¢ for massl and mass2
respectively giving:

-b.g + tensionl = b.al (5)

c.g - tensionl = c.al (6)

The set of simultaneous equations and/or
inequalities produced by the problem solving

module is passed to the algebra module (PRESS)
which will solve them to produce a final answer
to the problem. Let us look at how PRESS

produces a solution for al givem (5) and (6).
The two equations are solved by isolating
" tensionl in the second equation (which was

intended to solve for temsionl), and then using
the result as a substitution into the first
equation. This final result can then be
simplified with al being isolated on the left
hand side to give the final answer:

al = g.(c=b) / (c+b) (&)

The extension of equation solving techniques

to inequalities (there are interesting
connections) has enabled us to solve the
inequalities produced by the prediction
problems, but in addition we have found that
the information required to justify the use of
certain rewrite rules 1is often of the form
‘orly 1if X > 0’ ete. Solving and proving
inequalities is therefore of direct use within

the system.

However, PRESS was not developed purely as a
service program for MECHO. It was intended as
a vehicle to explore ideas about controlling
search in mathematical reasoning using
meta-level descriptions and strategies [3].

‘meta-level

. are arcs between them.

Rather than using exhaustive application over a
large set of rewrite rules, it wuses the
meta-level stategies of isolation, collection
and attraction to carefully control application
of several different sets of rewrite rules.
This selectivity has many advantages:
principled methods for guiding search cut down
useless work, identical rules may be used in
different ways (eg left to right or right to
left) in different circumstances without
causing problems, and theoretical requirements
such as proof of termination of the rewrite
rules are made much easier.

When PRESS is wused as an equation and
inequality solver (le as a module of MECHO), it
classifies the equations (inequalities) to be
solved so as to generate guidance information.
An exciting area of research that we would like
to expand on is that of designing inclusion and

ordering criteria to classify algebraic.
identities which are produced by a theorem
prover, This would enable the system to
automatically learn new rules, The use of

reasoning to place new rules into a
framework where they will be selectively and
correctly applied overcomes many of the obvious
‘explosion” and “looping’ problems that would
occur with haphazard additions to a large
single rewrite rule set.

3. Discussion

Throughout the above description of the Mecho
program we have constantly emphasised the
importance of ‘meta-information’ in controlling
search. This has been applied in the rejection
of semantically meaningless parses, the control
of inference, the extractiom of - equations and

" the guiding of algebraic manipulatiom.

The theme that has emerged from our work is
the benefit to be gained from axiomatising the
meta-level of the domain under investigation
and performing inference at this level,
producing object level proofs as a side effect.
This is the methodology investigated by Pat
Hayes in the GOLUX project {9}, except that we
have developed our meta-level representation
for a particular domain rather than adopting
general purpose representations based omn
resolution theorem proving systems.

In [2] we showed how GPS could be viewed in
this way. At the object-level the search space
can be viewed as an operator/state OR tree 1in
which the states are nodes and the operators
At the meta-level the

1024

search space can viewed as a method/goal AND/OF
tree in which the goals are nodes and the
methods are arcs between them. A simple depth
first search at the meta-level then induces a
highly complex, middle-out search at the
object-level.

In order to make clear the distinction we are
drawing between meta-level and object-level
representations in Mecho, we shall 1list belov
examples of the descriptions used at eact

level. When defining a notation it is usual tc
define the constants, variables, functior
symbols and predicate symbols of the language;

and then to show how terms and formulae can be
formed by composing them together with the
logical connectives. We shall follow this type
of outline in an informal fashion. (To avoic
confusion with earlier terminology we shall use
the words ‘assertion’ and ‘rule” to replace
‘formula’).

At the object-level we have the
kinds of primitive:

following

constants pl, endl, mass2, al, right, 90,
270, lbs, feet ete.
variables Pl, Str, Period, Accel, 7, M

etc.
function symbols +, *, cos etc.

predicate symbols accel, relaccel, mass

- fixed_contact etc.

These are formed into terms such as ‘M * A’ an

assertions such as 'F =M * A’, “accel(pl,al
270,periodl)”’ ete. Finally, logica
connectives are used to form these assertion:

into inference rules like:
relaccel(Pl,PZ,zero,Dir,Period)
<-= constrelvel(Pl,P2,Period).

The only function symbols at the object-leve

are for straight forward arithmetic an
trigonometric functions. This is because w
have recorded function properties by makin
meta~level assertions about object-leve
predicates.

At the meta-level all these object~leve

descriptions are meta-constants along wit
additional meta-constants for schema names
formula names, object types, strategy type

etc,
have:

As examples of meta-~level primitives w

(Any object level description).

constants
physobj, pullsys, resolve,
particle, line, length, dbinf
etc.

variables Type, Eqn, Goal, Strategy,
Exprl etc. (see later)

function symbols Constructors for lists, sets,
bags etc.

predicate gsymbols meaning, sysinfo, schema,
kind, relates, isform, rewrite,
meta etc.

Again these can be formed into meta-terms and

meta-assertions and we gave several examples
during the program description. What we shall
now examine are the meta-rules which are formed
from these assertions. (These use the same
logical connectives as the object-level rules).
We shall take simplified examples from each of
the four main areas of our work.

The first example is a rule used by the
Natural Language module, which specifies the
conditions for a property to be

correctly
applied to a particular entity. .

attribute(Property,Entity,State)

e type_ponstraint(?roperty,Type) &
isa(Type,Entity) & :
meaning(Property,Entity,Assertion) &
consistent(Assertion,State).

This rule states that a particular Property can
be attributed to an Entity in a given State (of
the parse), if the Entity satisfies the
type_constraint of of the Property, and if the
meaning of the attribution is consistent with
all the other assertions in the curremt State.
(If, for example, the Assertion was ‘mass(sl,
zero)” then this would involve checking that no
other mass was known for sl. It is here that
we see one of -the key connections with our work
on Problem Solving, since this is precisely a
matter of ’function properties’!).

The following is an example taken from the
Marples Algorithm, and it defines the
requirements for an equation to solve for a

particular quantity.

solves_for(Q, Eqn)
<=~ kind(Q,Type,Defn) &
relates(Type,F_list) &
select(Formula,F_list) &
prepare(Formula,Defn,Situation) &
isform(Formula,Situation,Eqn).

e e

1025

This rule states that Eqn solves for Q if Q has
type Type and Formula is a formula that relates
Type quantities to other quantities, and if
Situation is the situation within which to
apply the Formula given the Defn of Q, and if
Eqn is the instantiation of the formula in the
given Situation. It can be seen that this rule
is a direct axiomatisation of our earlier
description of how the Marples algorithm
extracts equations. (The select goal would
specify the qualitative guidance and apply the
independence criteria (given extra arguments)).

In a similar way we give the following
example of rules which describe how the
Inference Control uses function properties.

is_§atisfied(Goal)
<-=- rewrite(Goal,Newgoal,Strategy) &
decompose(Newgoal ,Pred,Args) &
meta(Pred,N,Args,Types,Func_info) &
method(Strategy,Funq_info,Newgoal).

method(strategy(dbinf), :
* function(Fargs => Vals), Newgoal)
o all_pound(Fargs) &
usq_function_properties(Newgoal).

The first rule states that Goal is satisfied if
it rewrites to Newgoal whose predicate symbol
has certain Func_info, and if a method is used
based on the Strategy and this Func_info.
(Certain arguments to meta have been ignored).
The second rule states that the normal
inference method will prove Newgoal given its
function properties if all the functicn
arguments, Fargs, are bound, and if
object-level inferencing is performed using
function property pruning. '

As a final example we take a rule concerned
with algebraic equation solving. This rule is
interesting inm that while PRESS does not
currently use it, it could be derived from
rules PRESS does have. Automating this
procedure would be an interesting area for
study.

solve(U, Exprl, Ans)
<¢~= occ(U,Exprl,2) &
collect(U,Exprl,Expr2) &
isolate(U,Expr2,Ans).

This rule states that Ans is an equation which

solves for U given Exprl if Exprl contains two
occurances of U, 1if Expr2 is an equation
derived from Exprl in which these two

occurances have been collected together, and if

Ans is an equation derived from Expr2 in which
U has been isolated on the left hand side.

All the above rules <can be seen as
classifying object-level descriptions and using
this information in deciding what to do.
However the effects are very different in the
different areas. In the natural language
processing meta-level rules monitor
object-level assertions, rejecting semantically
unacceptable consequences of a parse. In
equation extraction the effect 1s to select
equations using a means/ends analysis
technique. In Inference Control the result is
use of the most effective axiomatisation for
the goal in hand, and in Algebraic manipulation
multiple rewrite rules are selectively brought
to bear on expressions. Thus relatively simple
meta-level search strategies can induce a wide
variety of complex object-level behaviours.

These meta-inference techniques were strongly
suggested by our use of the programming
language Prolog. The - fact that Prolog
procedures are also predicate calculus clauses
and the fact that predicate calculus has a
clear semantics, encourages the user to attach
meanings to his procedures and these meanings
are usually meta-theoretic. However, Prolog as
a programming language only offers a single
level of ‘syntactic’ structures (atoms,
compound terms etc.), and a lack of care can
lead to a blurring of theoretical. distinctions,
During the development of Mecho, a lack of
emphasis (realisation?) of these distinctions
resulted in a mixing of object and meta levels.
(for example the use of Prolog variables to
represent variables at both levels, the mixing

of object and meta level assertions in rules
such as isform). We plan to remove these
aberrations,

Weyrauch’s work on the FOL system (See [171),
is of importance in relation to this need for
an adaquate theoretical formalism. The
distinction between the object-level and the
meta-level 1is fundamental within his system,
and his use of ‘reflection principles’ is
designed to capture the relation between these
levels. We feel that his work is of direct
value to workers in the field of expert
systems, such as ourselves.

The principle of utilising ‘knowledge about
knowledge” 1is becoming increasingly important
in practical AI programs. Davis and Buchanan
(6] classified four different kinds of
meta~level knowledge used by their TEIRESIAS
system. They represent knowledge about objects
and the data-structures used to describe them

1026

in schemata and describe the argument :ype
characteristics of their - functions in
templates. Their program can classify and

build models of the inference rules it uses and
meta-rules are wused to guide the choice of
inference rules to be used and the order of
using them. In MECHO, the Natural Language and

Inference Control modules both use information
like that stored in TEIRESIAS templates. MECHO
meta-level inference rules are similar in

spirit to TEIRESIAS meta-rules except that the
MECHO rules are more general purpose and they
generate a variety of different search
strategies in different contexts.

4. Conclusion

In this paper we have discussed Mecho, a

program for solving mechanics problems. We
have shown how the technique of using and
controlling knowledge about the domain by

inference at the meta-level, can be applied to
a range of different areas. Many workers in
the field (eq [9], [6], [17]), have argued that
controlling search by using meta-level
inference is superior to built~in, smart search
strategies because the search information is
more modular and transparant. The argument 1is
for systems to make explicit the full knowledge
involved in their behaviour, which in turn aids
the modification of their data and strategies,
thus improving their robustness and generality.
This leads the way to systems which could
automatically modify their strategies and
explain their control decisions.

We conclude that meta-level inference can be
used to build sophisticated and flexible
strategies, which provide powerful techniques
for controlling the use of knowledge, while
retaining the clarity and modularity of a
declarative knowledge representation.

S. References

(1} Bobrow, D.
Natural Language input for a computer
problem solving system.

PhD thesis, MIT, , 1964,

{2] Bundy, A. "Computational models for
problem solving," Learning and Problem
Solving (part 3), The Open Univ. Press,
1978. wunits 26-27 of the Open University

Cognitive Psychology Course D303

{3]

[4]

{51

(6]

(71

(8}

(91

{10]

Bundy, A. & Welham, R.
Using meta-level descriptions for

selective application of multiple
rewrite rules in algebraic
manipulation.

Forthcoming working paper,
Dept. of Artificial Intelligence,
Edinburgh., 1979. -

Bundy, A., Byrd, L., Luger, G., Mellish,
C.; Milne, R. and Palmer, M.
Mecho: A program to solve Mechanics

roblems.
Working Paper No. 50,
" Dept. of Artificial Intelligence,
Edinburgh., 1979.

Charniak, E.
Computer solution of calculus word

problems, pages 303-316.
1JCAL, 1969.

Davis, R. & Buchanan, B.G.

Meta-level knowledge: overview and

applications, pages 920-927.
IJCAI, 1977.

De Kleer, J.
Qualitative and quantitative knowledge in

classical mechanics,
Technical Report AI-TR=-352, MIT AI Lab,
1975.

Haviland, S.E. & Clark, H.H.

What’s new? Acquiring new information as
a process in comprehension.

Journal of Verbal Learning and Verbal

. Behaviour 13:512-521, 1974.

Hayes, P.
Computation and deduetion.

Czech. Academy of Sciences, 1973.

Humphrey, D.
Intermediate Mechanics, Dynamics.
Longman, Greem & Co., London, 1957.

1027

[11]

(12]

{13]

(14])

{15]

[16]

(17}

(18]

Larkin, J.

Problem solving in Physics.

Technical Report, Group in Science and

' Mathematics Education, Berkeley,
California, 1977.

Marples, D.
Argument and technique in the solution of

problems in Mechanics . and Electrlcity.

Technical Report CUED/C- Educ/TRI, Dept.
of Engineering, Cambridge, England,
1974,

Novak, G.
Computer understanding of Physics

problems stated in Natural Language.

Technical Report TR N NL30, Dept. Computer
Science, Univ. of Texas, Austin.,
1976.

Pereira, L.M., Pereira, F C.N. and

Warren, D.H.D.

User’s guide to DECsystem~-10 PROLOG

Dept. of Art1f1c1al Intelliigence,
Edinburgh, 1978. ‘

Stallman, R.M. & Sussman, G.J,
Forward reasoning and dependency—direcred

backtracking in a system for
computer-aided circuit analysis,

Technical Report No. 380, MIT AI Lab,
1976,

Waltz, D.
Generating semantic descriptions frcm

drawings of scenes with shadows..
Technical Report MAC AI-TR-271, MIT AT
Lab, 1972. ’

Weyhrauch, R.W. :
Prolegomena to a theory of mechanized

formal reasonlng.
RWW Informal Note 8.,)
Stanford University, 1979.

Winograd, T.
Understanding Natural Language.

Edinburgh University Press, 1972.

